8,620 research outputs found

    Chimpanzee faces under the magnifying glass: emerging methods reveal cross-species similarities and individuality

    Get PDF
    Independently, we created descriptive systems to characterize chimpanzee facial behavior, responding to a common need to have an objective, standardized coding system to ask questions about primate facial behaviors. Even with slightly different systems, we arrive at similar outcomes, with convergent conclusions about chimpanzee facial mobility. This convergence is a validation of the importance of the approach, and provides support for the future use of a facial action coding system for chimpanzees,ChimpFACS. Chimpanzees share many facial behaviors with those of humans. Therefore, processes and mechanisms that explain individual differences in facial activity can be compared with the use of a standardized systems such asChimpFACSandFACS. In this chapter we describe our independent methodological approaches, comparing how we arrived at our facial coding categories. We present some Action Descriptors (ADs) from Gaspar’s initial studies, especially focusing on an ethogram of chimpanzee and bonobo facial behavior, based on studies conducted between 1997 and 2004 at three chimpanzee colonies (The Detroit Zoo; Cleveland Metroparks Zoo; and Burger’s Zoo) and two bonobo colonies (The Columbus Zoo and Aquarium; The Milwaukee County Zoo). We discuss the potential significance of arising issues, the minor qualitative species differences that were found, and the larger quantitative differences in particular facial behaviors observed between species, e.g., bonobos expressed more movements containing particular action units (Brow Lowerer, Lip Raiser, Lip Corner Puller) compared with chimpanzees. The substantial interindividual variation in facial behavior within each species was most striking. Considering individual differences and the impact of development, we highlight the flexibility in facial activity of chimpanzees. We discuss the meaning of facial behaviors in nonhuman primates, addressing specifically individual attributes of Social Attraction, facial expressivity, and the connection of facial behavior to emotion. We do not rule out the communicative function of facial behavior, in which case an individual’s properties of facial behavior are seen as influencing his or her social life, but provide strong arguments in support of the role of facial behavior in the expression of internal states

    Joint Density-Functional Theory of the Electrode-Electrolyte Interface: Application to Fixed Electrode Potentials, Interfacial Capacitances, and Potentials of Zero Charge

    Full text link
    This work explores the use of joint density-functional theory, a new form of density-functional theory for the ab initio description of electronic systems in thermodynamic equilibrium with a liquid environment, to describe electrochemical systems. After reviewing the physics of the underlying fundamental electrochemical concepts, we identify the mapping between commonly measured electrochemical observables and microscopically computable quantities within an, in principle, exact theoretical framework. We then introduce a simple, computationally efficient approximate functional which we find to be quite successful in capturing a priori basic electrochemical phenomena, including the capacitive Stern and diffusive Gouy-Chapman regions in the electrochemical double layer, quantitative values for interfacial capacitance, and electrochemical potentials of zero charge for a series of metals. We explore surface charging with applied potential and are able to place our ab initio results directly on the scale associated with the Standard Hydrogen Electrode (SHE). Finally, we provide explicit details for implementation within standard density-functional theory software packages at negligible computational cost over standard calculations carried out within vacuum environments.Comment: 18 pages, 5 figures. Initially presented at APS March Meeting 2010. Accepted for publication in Physical Review B on Jul. 27, 201

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study

    Get PDF
    The superior temporal sulcus (STS) of the macaque monkey contains multiple visual areas. Many neurons within these regions respond selectively to motion direction and to more complex motion patterns, such as expansion, contraction and rotation. Single-unit recording and optical recording studies in MT/MST suggest that cells with similar tuning properties are clustered into columns extending through multiple cortical layers. In this study, we used a double-label 2-deoxyglucose technique in awake, behaving macaque monkeys to clarify this functional organization. This technique allowed us to label, in a single animal, two populations of neurons responding to two different visual stimuli. In one monkey we compared expansion with contraction; in a second monkey we compared expansion with clockwise rotation. Within the STS we found a patchy arrangement of cortical columns with alternating stimulus selectivity: columns of neurons preferring expansion versus contraction were more widely separated than those selective for expansion versus rotation. This mosaic of interdigitating columns on the floor and posterior bank of the STS included area MT and some neighboring regions of cortex, perhaps including area MST

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    Analysis of Complex Motion Patterns by Form/Cue Invariant MSTd Neurons

    Get PDF
    Several groups have proposed that area MSTd of the macaque monkey has a role in processing optical flow information used in the analysis of self motion, based on its neurons’ selectivity for large-field motion patterns such as expansion, contraction, and rotation. It has also been suggested that this cortical region may be important in analyzing the complex motions of objects. More generally, MSTd could be involved in the generic function of complex motion pattern representation, with its cells responsible for integrating local motion signals sent forward from area MT into a more unified representation. If MSTd is extracting generic motion pattern signals, it would be important that the preferred tuning of MSTd neurons not depend on the particular features and cues that allow these motions to be represented. To test this idea, we examined the diversity of stimulus features and cues over which MSTd cells can extract information about motion patterns such as expansion, contraction, rotation, and spirals. The different classes of stimuli included: coherently moving random dot patterns, solid squares, outlines of squares, a square aperture moving in front of an underlying stationary pattern of random dots, a square composed entirely of flicker, and a square of nonFourier motion. When a unit was tuned with respect to motion patterns across these stimulus classes, the motion pattern producing the most vigorous response in a neuron was nearly the same for each class. Although preferred tuning was invariant, the magnitude and width of the tuning curves often varied between classes. Thus, MSTd is form/cue invariant for complex motions, making it an appropriate candidate for analysis of object motion as well as motion introduced by observer translation

    The Implementation of the Shear Correlation Function and the Matter Power Spectrum in R

    Get PDF
    Weak gravitational lensing is an important tool in understanding the large-scale structure of the universe. One component in understanding the effect of weak gravitational lensing is the shear correlation function and matter power spectrum. The calculation of these values is often complicated and time consuming. In order to decrease the cost of these calculations they were implemented in R using parallelization. This resulted in the calculations completing faster and the process to be easily changed in order to fit the need of each researcher using the algorithms created in R

    Analysis of Complex Motion Patterns by Form/Cue Invariant MSTd Neurons

    Get PDF
    Several groups have proposed that area MSTd of the macaque monkey has a role in processing optical flow information used in the analysis of self motion, based on its neurons’ selectivity for large-field motion patterns such as expansion, contraction, and rotation. It has also been suggested that this cortical region may be important in analyzing the complex motions of objects. More generally, MSTd could be involved in the generic function of complex motion pattern representation, with its cells responsible for integrating local motion signals sent forward from area MT into a more unified representation. If MSTd is extracting generic motion pattern signals, it would be important that the preferred tuning of MSTd neurons not depend on the particular features and cues that allow these motions to be represented. To test this idea, we examined the diversity of stimulus features and cues over which MSTd cells can extract information about motion patterns such as expansion, contraction, rotation, and spirals. The different classes of stimuli included: coherently moving random dot patterns, solid squares, outlines of squares, a square aperture moving in front of an underlying stationary pattern of random dots, a square composed entirely of flicker, and a square of nonFourier motion. When a unit was tuned with respect to motion patterns across these stimulus classes, the motion pattern producing the most vigorous response in a neuron was nearly the same for each class. Although preferred tuning was invariant, the magnitude and width of the tuning curves often varied between classes. Thus, MSTd is form/cue invariant for complex motions, making it an appropriate candidate for analysis of object motion as well as motion introduced by observer translation

    Magnetic and electrical properties of (Pu,Lu)Pd3

    Get PDF
    We present measurements of the magnetic susceptibility, heat capacity and electrical resistivity of Pu1x_{1-x}Lux_xPd3_3, with xx=0, 0.1, 0.2, 0.5, 0.8 and 1. PuPd3_3 is an antiferromagnetic heavy fermion compound with TN=24T_N=24~K. With increasing Lu doping, both the Kondo and RKKY interaction strengths fall, as judged by the Sommerfeld coefficient γ\gamma and N\'eel temperature TNT_N. Fits to a crystal field model of the resistivity also support these conclusions. The paramagnetic effective moment μeff\mu_{\mathrm{eff}} increases with Lu dilution, indicating a decrease in the Kondo screening. In the highly dilute limit, μeff\mu_{\mathrm{eff}} approaches the value predicted by intermediate coupling calculations. In conjunction with an observed Schottky peak at \sim60~K in the magnetic heat capacity, corresponding to a crystal field splitting of \sim12~meV, a mean-field intermediate coupling model with nearest neighbour interactions has been developed.Comment: 13 pages, 13 figure
    corecore